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ABSTRACT 

Fault tree analysis has proved to be a useful analytical 
tool for the reliability and safety analysis of complex sys- 
tems. This is a semi-expository introduction to the mathe- 
matics of fault tree analysis. Many of the concepts of coherent 
structure theory have been used. Bounds on the system relia- 
bility when components are dependent (that is, are associated) 
are given. Algorithms to find the min-cut-sets and related 
bounds, together with various means for computing the proba- 
bility of the Top Event are presented. Measures of event 
importance are discussed. Numerical examples are presented 
to illustrate the concepts. 
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CONFERENCE ON RELIABILITY AND 
FAULT TREE ANALYSIS 

The purpose of   the conference  is  to bring  forth recent 
developments  in  the   fields of  Reliability and  Fault Tree Analy- 
sis.     Models,   concepts and methods  of  quantitative analysis  in 
both fields have significant  similarities.     This conference,  for 
the first  time,  will provide a ground for  the exchange of  ideas 
among various  groups  that  have been following   independent  paths. 

SESSIONS WILL INCLUDE: 

1. FaaLt  Tree  Construct Ion 
2. Fault Tree Analysis 
3. Coherent  Structuivs ami  Combinatorics 
4. Statistical l'rob Ums  In Ueliabllity and  Fault Tree Analysis 
5. Network  Rellab 1.1 i ty 
6. Computer   Reliability 
7. Applications   to  Umlrai   I'ower  Reactors  and  Other  Fields 

Apart from these fn'ssuins, an organized panel discussion will 
bo scheduled to bring I'nrth unsolved but crucial problems in these 
areas. 

The conference  wi I I   be.  held at   the University of California, 
Berkeley  Campus,   I.rom Sejil ember  3   to  September   7,   1974.     In the 
imiquo  setting  ol   the  San  Francisco  Bay Area,   the conference will 
provide both  profess Lunal   eKC.eLlence and  a  taste of cosmopolitan 
I iving. 

The   registration  lee   Is  $25.00.     For   further  information,   contact 
P.   Chatterjee,   Operations Research Center,   University of  California, 
Berkeley,  California 94720  (415)   642-4993. 

Program Committee: 

R.   E.   Barlow 
P.   Chatterjee 
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INTRODUCTION TO FAULT TREE ANALYSIS 

by 

Richard E. Barlow and Purnendu Chatterjee 

0.  INTRODUCTION AND SUMMARY 

This Is a seml-exposltory Introduction to the mathematics of fault tree 

analysis. The literature on fault tree analysis Is, for the most part, 

scattered through conference proceedings and company reports. Therefore, we 

feel that a readable, logical Introduction to the subject is very much needed. 

A discussion of fault tree construction may be found in Lambert (1973). A 

description of fault tree concepts and techniques can also be found in Fussell 

(1973). Vesely (1970) has considered fault tree analysis from the point of 

view of computer implementation. 

Our main contribution Is to develop a mathematical theory of fault tree 

analysis using many of the concepts of coherent structure theory [Birnbaum, 

Esary and Saunders (1961)] and to show how dependent events may be analyzed. 

It has been observed by reliability theorists that fanny  of the quantities 

computed by fault tree analysts can also be computed using the concepts and 

techniques of reliability theory. While this is true, we feel that the tree 

structure used by fault tree analysts and the somewhat different problems of 

Interest to fault tree analysts, warrant a separate development. 

In Section 1 we present some examples of fault trees and the symbols used. 

In Section 2 we describe some algorithms due to J. Fussell (1973) for analyzing 

fault trees. Dual fault trees and their uses are described In Section 3. 

Section 4 Is a lengthy development of methods for probability evaluation of 

fault trees. New results on computing probabilities for trees with dependent 

events are presented. Section 5 considers measures of event Importance. Many 

concepts are Illustrated using the pressure tank example Introduced in Section 1. 
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maailaää^KtUtilB^^m^'... ^^ ,..        ,   ._ _ ^ ^ 



*m*mimm TW^^^aiUHIII 111, .J)iiJl.niiliHTO».J»m'.' Uli »-■■'■ i'll»,«'H»w ll?wmmi!-*mww*'M™jM,mi«mK-rawv^^™™w'~r™'*<^r™~T^' 

1.    FAULT TREES 

To construct tault trees we employ the following useful symbolism.    Com- 

ponent states or, more generally, basic evente will be represented by circles 

and diamonds.    A system event of major importance will be represented by a 

rectangle 

Top Event 

called the Top Event,  appearing at the top of the fault tree.    For examp1e,  this 

may indicate a particular type of system failure.    Intermediate system or sub- 

system events will also be represented by rectangles.     Immediately below each 

rectangle will be either an AMD gate represented by 

Output 

A 

or an OR gate represented by 

Inputs 

AND GATE 

Output 

Inputs 

OR GATE 

The output event to an AMD gate occurs if and only if all input events 

occur. It is helpful to put a dot (for set product or intersection) in the 

center of the AND gate.  For example, to symbolize that if each of the events 

A , B , C , and D occur, then the event E will occur, the fault tree analyst 

would draw 

  ■ nüfjuar n, i !■■■■ MMMM  ■-   -—■■*■■ "■  ■ 
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FIGURE 1: AND GATE 

The output event to an OR gate occurs if one or more of the input events 

occur. It Is helpful to put a plus (for set sum or union) In the center of the 

OR gate. For example, E occurs If one or more of the events A , B , C or D 

occurs in Figure 2. 

FIGURE 2: OR GATE 

Repetition of basic events is permitted In a fault tree. 

Example. One-out-of-Two Twice System. 

Figure 3 symbolizes a system whose function is to shut down a nuclear power 

plant in the event of a low coolant pressure. The 2-out-of-2 coincidence unit 

produces a trip signal provided that the "OR" unit in both the upper and lower 

IHM-—   I •MMMMMUMIM 
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branches simultaneously produces an output signal. Such logic Is called one-out- 

of-tuo tbiiae.    Units c  through c, are pressure switches. The i  switch 

will produce an output signal (we call this basic event i) if the pressure p. 

drops below a prescribed value,  i • 1, ..., 4 . A fault tree for this system 

with Top Event, "Spurious Trip Signal Produced," is shown i. 7igure 4. 
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l-out-of-2 
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l-out-of-2 
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UNIT 

Trip 
2-out-of-2 
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FIGURE 3:    ONE-OUT-OF-TWO TWICE SYSTEM 
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FIGURE 4:     FAULT TREE FOR ONE-OUT-OF-TWO TWICE SYSTEM 
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Example. Pressure Tank System. 

Consider the pressure tank engineering diagram In Figure 5. Let the Jop 

event (which we wish to prevent) be the rupture of the pressure tank. To start 

pumping, the switch SI (a push button) Is closed and then Immediately opened. 

This allows current to flow In the control branch circuit which activates relay 

coll K2 .  Relay contacts K2 then close and start up the pump motor. After 

a period of approximately 20 seconds, the pressure switch contacts open (since 

excess pressure Is detected by the pressure switch), deactivating the control 

circuit which de-energlzes the K2 coll. The K2 contacts then open and shut 

off the motor. If there Is a pressure switch malfunction, then the timer relay 

contacts open after 60 seconds, de-energizlng coll K2 , and shutting off the 

pump. The timer resets Itself automatically after each cycle. 

The fault tree drawn In Figure 6 Is based on an analysis of the possible 

failure modes of the system. Circles represent primary basic events,  while 

diamonds represent Beoondary baeia events. For example. If the Kl relay con- 

tacts (Figure 5) fall to open under normal operating conditions (I.e., within 

the "design envelope"), this Is considered a primary basic event. If the Kl 

relay falls to open because the wrong relay was Installed, then this Is con- 

sidered a secondary basic event. A systematic method for drawing fault trees 

has been developed by David Haasl (1965). The pressure tank example Is due to 

Haasl [cf. also Lambert (197?)]. 

■     —»««b» 
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Generally, fault trees serve three purposes: 

In safety analysis, a fault tree aids In determining the possible causes 

of an accident. When properly used, the fault tree often leads to discovery 

of failure combinations which otherwise might not have been recognized as 

causes of the event being analyzed. 

The fault tree serves as a display of results. If the system design is 

not adequate, the fault tree can be used to show what the weak points are 

and how they lead to undesirable events.  If the design is adequate, the 

fault tree can be used to show that all conceivable causes have been con- - 

sidered. 

The fault tree provides a convenient and efficient format helpful in the 

computation of the probability of system failure. 

Jfe* 
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2.  MINIMUM CUT SET ALGORITHM 

A aut set  Is a set of basic events whose occurrence causes the Top Event 

to occur. A cut set Is minimal  if it cannot be reduced and still insure the 

occurrence of the top event. A listing of minimal cut sets (or min out Bete) 

is useful for design purposes in otder to determine the "weakest links" in the 

system. 

For a fault tree with perhaps hundreds of gates and hundreds of basic 

events it is clearly not easy, nor in general possible, to determine all min 

cut sets by inspection. An algorithm is therefore required to generate all 

min cut sets. The -Igorithm Is based on the fact that an AND gate always in- 

creases the size  of a cut set while an OR gate always increases the number  of 

cut sets. The algorithm obtains cut sets such that, if all the primary events 

were different, the cut sets so generated would be precisely the minimal cut 

sets. When this is not the case, the cut sets generated by the algorithm are 

then reduced to minimal cut sets. This algorithm was first stated by J. Fussell 

and W. Vesely (1972). 

The simplest and clearest way to explain the min aut set algorithm  is to 

illustrate its operation In an example.  Figure 7 is a relabelling of the basic 

events and gates in the pressure tank fault tree described in Figure 6. AND 

and OR gates are labelled G- 1 through G-8.  The algorithm begins with the gate 

immediatelv below the top event, which we label G-0.  If G-0 is an OR gate, 

each input is used as an entry in separate rows of a Hat matrix. If G-0 is 

an AND gate, each input is used as an entry in the first row of a list matrix. 

Since in Figure 9, the gate Immediately below the top event is an OR gate we 

begin the construction of our list matrix by listing inputs 1 , G-l , and 2 

In separate rows as follows: 

1 

G-l 

2 

I „ ■ - ^ ■ ■ 
 - r -— ■ 
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TOP 
EVENT 

FIGURE 7:     PRESSURE TANK FAULT TREE 
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Since any one of these input events can cause the top event to occur,  each will 

be a member of a separate cut set. 

The Idea of the algorithm is to replace each gate by Its input gates and 

basic events until a list matrix is constructed,  all of whose entries are basic 

events.    The rows will then correspond to cut sets. 

Since G-l is an OR gate, we again replace G-l by its input events in separate 

rows as follows: 

1 

G-2 

3 

2  . 

Since G-2 is also an OR gate, we replace G-2 by its input events as follows: 

1 

k 

5 

G-3 

3 

2 . 

Since G-3 is an AND gate, we replace the row  containing G-3 by its inputs as 

follows: 

1 

A 

5 

G-4 , G - 5 

3 

2 . 

M».iif»ia...i i ii nnrtiirMIM   .^.    i-i    1I.IM-.III-. 
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Since all Inputs to an AMD gate must occur to cause the corresponding Inter- 

mediate event above the AND gate, we see that an AND gate Increases the length 

of Its row. An OR gate, on the other hand, Increases the number of rows In 

our list matrix. 

Replacing G-4 by its inputs, we have 

1 

A 

5 

G-6 , G-5 

G-7 , G-5 

3 

2 . 

Continuing In this fashion we eventually obtain a list matrix with 29 rows. 

These are (In a different order), 

1 

2 

3 

4 

5 

6  , 

6  , 10 

6  , 11 

6  , 12 

6  . 13 

6  , 14 

6  . 15 

6  . 16 

, 9 

, 10 

. 11 

, 12 

, 13 

, I* 

. 15 

, 16 

8 . 9 

8 , 10 

8 , 11 

8 , 12 

8 , 13 

8 , 14 

8 , 15 

8 , 16 

r*L^ 
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In the pressure tank fault tree (Figure 7), basic events are not repeated. 

For this reason all of our cut sets are minimal cut sets;  I.e., no one cut set 

Is contained In any other cut set.    More generally, with replication of basic 

events In the event tree,  we will not obtain only mln cut sets by this algorithm. 

Therefore It will be necessary, in general,  to reduce the list, eliminating cut 

sets which contain other cut sets.    The resulting list will then contain all mln 

cut sets for the fault tree. 

The cut sets obtained by the above algorithm are called Boolean Indicated 

Cut Seta  (or 6ICS)  since they will not,  In general,  be minimal.    It Is a simple 

matter to determine the number and maximum size of BICS for a fault tree.    For 

large fault trees this should be done before applying the mln cut algorithm In 

order to dimension the list matrix. 

An Algorithm for Determining the Number of BICS 

The number of BICS Is an upper bound to the number of minimal cut sets. 

It is, perhaps,  easiest  to explain the algorithm by an example.    We consider 

the pressure tank fault tree In Figure 7 once again.    First, assign weight    1 

co each of the    16    basic events.    Next,  assign weights to each gate starting 

from the bottom until we reach the top.    The weight assigned to the Top Event 

will be the number of BICS.    To an OR gate we assign a weight correspond to 

the sum of the weights of events Input to the OR gate;   thus, gates    G5, 06 

and    G8    are each assigned weight    3  .    Gate    G7    Is assigned weight    5    since 

input events    12    and     13    each have weight    1   .     Gate    G4    Is assigned weight    8   . 

To an AND gate we assign a weight corresponding to the produot of the weights 

of the Input events.    Hence, gate    G3    Is assigned weight    24 .    Gate    G2    Is 

assigned weight    26    while gate   Gl    Is assigned weight    27 .    The Top Event Is 

assigned weight    29 .     This Is precisely the number of BICS founu by the mln cut 

algorithm.     (See Fussell   (1973).] 

■ ■-- ■MMMM 
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An Algorithm for Determining the Maximum Number of Baalc Eventa In any BICS 

Aa In the previous algorithm, we begin by assigning weight 1 to all 

basic events.  However, we employ a different method of assigning weights to 

gates. Again, consider the pressure tank exuople In Figure 7. To an OR gate 

we assign a weight corresponding to the maximum  of the weights of input events. 

Thus, gates G5 , G6 and G8 are assigned weight 1 , Likewise, gates 07 

and GA are assigned weights 1 . 

To an AND gate we now assign the sum of weights corresponding to input 

events. Thus, gate 03 has weight 2 . Likewise, gates G2 , 01 and, finally, 

the Top Event have weight 2 . Recall that the maximum length of BIOS obtained 

by our min cut algorithm for the pressure tank examples was also 2 .  In gen- 

eral, this algorithm will only obtain an upper bound  on the maximum size of mln 

cut sets.  [See Fussell (1973).] 

See Chatterjee (1973) for a rigorous presentation and proofs of the pre- 

ceding algorithms. 
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3.  DUAL FA1TLT TREES 

If the Top Event occurs we have system failure. This is of great Interest 

from a safety point of view. However, from a reliability point of view, we are 

also Interested in the nonoccurrence of the Top Event.  To draw the dual fault 

tree, replace OR gates by AND gates and AND gates by OR gates in the original 

fault tree. Events are also replaced by their corresponding dual. If the Top 

Event Is "pressure tank rupture" as in Figure 6, the dual event is "no pressure 

tank rupture." More generally, dual basic events correspond to the nonoccurrence 

of the original basic events. The dual fault tree for the pressure tank example 

is drawn in Figure 8. 

The min out sets  for the dual fault tree are the min path sets  for the 

original fault tree. A path set  is a set of basic events whose nonoccurrence 

insures  the nonoccurrence of the Top Event. A path set is minimal if it cannot 

be further reduced and still remain a path set. To find mln path sets for a 

fault tree, draw the dual fault tree and use the mln cut algorithm to find the 

minimal cuts for the dual fault tree. The mln cut sets for the dual fault tree 

In Figure 8, are the mln path sets for the original pressure tank fault tree of 

Figure 7. They are 

{1',2',3',A',5',6',7',8'} 

(I'.a'.s'.A'.s'^MO'.iiMzMs'.u'.is'.ie'} 

(We use primes to indicate dual events.) If all basic events in either of these 

mln path sets do not occur, the Top Event in Figure 7 does not  occur, i.e., the 

pressure tank does not rupture.  Since there are only 2 min path sets as con- 

trasted to 29 mln cut sets, it. will be easier to compute probabilities later 

using the mln path sets. 

amm   - - — - 
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Example. The One-oui--'f-Two Twice System. 

The one-out-of-two twice system fault tree Is presented In Figure 4. The 

mln cut sets are {1,3} , {1,4} , {2,3} , and {2,4} .  If the coolant pressure 

is not  low, the occurrence of any one of the four min cut set events would pro- 

duce a spwioue  alarm. 

The dual of thf» fault tree is presented in Figure 9. This fault tree has 

two mln cuts U'^'} and {3',41} . These are min paths for the original 

fault tree. There are thus only two min path sets in the original event tree 

which could cause the failure of a trip signal when low coolant pressure is 

actually present. 

From this analysis (which neglects event probabilities) we see that the 

system has been designed to ensure valid alarms when low coolant pressure is 

present. However, it would appear prone to the production of false alarms 

since there are four min cut sets, any one of whose occurrence could cause a 

false alarm. A two-out-of-three system, for example, would be less prone to 

false alarms. 

0 

Relay Circuits 

Yet another application of the dual fault tree concept is to relay circuits. 

Suppose like relays are subject to two kinds of failure:  failure to close and 

failure to open.  Similarly circuits constructed from these relays are subject 

to two kinds of failure;  failure to close; i.e., no closed path is achieved 

from Input wire to output wire when the circuit is commanded to close, and 

failure to open; i.e., a closed path exists from input wire to output wire 

even though the circuit is commanded to open. 

If we construct a fault tree for such a circuit with Top Event-"Failure 

to Close", then uhe dual fault tree would have the dual Top Event-"Failure to 

Open". Thus, having constructed a fault tree for one kind of failure, the dual 

tree can be used to solve the second kind of failure. 

■ - ■',II miiMart  -T    lllll 
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FIGURE 8:     PRESSURE TANK DUAL FAULT TREE 
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FIGURE 9:    DUAL OF ONE-OUT-OF-TWO TWICE SYSTEM FAULT TREE 
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4.  PROBABILITY EVALUATION OF FAULT TREES   

A major goal of fault tree analysis is to calculate the probability of 

occurrence of the Top Event.    However,  it may also be useful to calculate the 

Importance of min cut sets to the Top Event or the importance of specified 

basic events to the Top Event.    We first review the most commonly used methods 

for calculating the probability of occurrence of the Top Event and then present 

new results for the case of dependent events.    To make these calculations it is 

useful to introduce a Boolean representation for fault trees similar to that 

used for coherent structures [Birnbaum, Esary and Saunders  (1961)]. 

Let 

(1    if basic event    i    occurs 

I 0    otherwise  . 

Let    Y ■ (Y^.Y-,  ..., Y )    be the vector of basic event outcomes.    Define 

*(Y) 
1 if the Top Event occurs 

0 otherwise . 

t|i is the Boolean Indicator function for the Top Event. We assume henceforth 

that each basic event occurs in the union of all min cut sets; i.e. all basic 

events are relevant to the Top Event. 

The Boolean indicator function can be determined from either the min cut 

sets or the min path sets. It will be convenient to introduce the notation 

m    J f    ® 
u Y 

ar 1 - n (1 - Y.) . 
i-1 i-1 

Min Cut Representation. 

Let KpKj, ..., K.  be the min cut sets of basic events for a specified 

fault tree. Then 

i nmk*,**'-—*****-^^-'■■■"':* ■■'■*-*-' .-...^■-■■.   .— . ■•'■—'-■■-■^-■•-■^ --    , i, ■■,AtB»iltr--^ •--iiliMim IMiintfliniii inn in  ■   ■-..a.. v-..-  
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i|((Y) -    U      n     Y 
8-1 ieK 

is the so-called mln cut representation for <)) 

Min Path Representation. 

Let P-.I" , .... P  be the min path sets of basic events for a specified 

fault tree. Then 

MY) 11  Y 
r-1 ieP 

i ' 

is the so-called mln path representation for \|/ . 

It is visibly obvious from either the min cut or the min path representation 

that i|i is coordlnatewise nondecreasing. 

Example.  Pressure Tank System. 

Let Y » (Y,,Y,, ..., Y,,) be the random vector for basic event outcomes 
—    1 z      io 

In the pressure tank event tree in Figure 7. Let iJ)(Y) - 1 if the top event 

occurs for outcome vector Y ; i.e., the pressure tank ruptures, and i|i(Y) ■ 0 

otherwise.  Then using the min path sets {1,2,3,4,5,6,7,8} and  {1,2,3,4,5,9, 

10,11,12,13,14,15,16} and the min path representation, we see that 

*m - /   u    Y\/    u     Y\ 
^1<1<8    ^^6,7.8    y 

- 1 -   n   (i - Y )   i -       n     (i - Y.) 
L   i-i       ^JL    IIKJ.S       1J 

Since there are 29 min cuts for this example, the min path representation is 

easier to work with. 

To calculate ehe probability of the Top Event which in this case is pressure 

tank rupture, let 

Ml   Mllll 
■ ■ -■'- '* ii.fi"   ■■■ rmin 



mum i^mrnm ^jmmi^W^Mmvwiii.t .tmAmfmni'iiKrmmißmm'.mmivifmim 

■' wmttlmt i*~'f*;*r*?' 

23 

P^ - 1]  - EYi - q1 

be the probability that basic event 1 occurs «here E stands for expectation. 

For the moment, assume all basic events are statistically Independent. Then 

P[Top Event] - EiHY) 

8 16 
(4.0) n (i - q.) -   n  (1 - q.) + n (1 - q ) 

1-1     X   1^6,7,8      1   1-1 

Assume that basic event    1    (I.e.,  the pressure tank Itself falls) occurs on 

Assume 8 ~8 
the average once In 10 loading cycles or In other words, q^ - 10 

basic event 1 (1^1) occurs on the average once in 10  loading cycles or. 

In other words, q. - 10~  for 1^1.  Then 

-8       -5 7        -8      -5 12 
EMY) « 1 - (1-10 ö)(l - 10 ^ - (1 - 10 ö)(l - 10 ^ 

+ (1 - 10'8)(1 - 10"5) 
15 

Hence 

Ei|»(Y) ~ 4 x 10 -5 

i 

Boolean Reductioo. 

In principle we can always compute the exact probability of the top event 

by reducing the Boolean expression, <|i(Y) , for the fault tree. We do this 

using the fact that for Boolean variables 

Yl " Yl ' 

In general, once we get rid of powers of the indicator variables we can 

obtain the probability of the tor event by merely substituting in probabilities 

for indicator variables. 

If there are no  replications among mln cut sets and basic events are 

'  ' ' l|"""' '" ■ ■    -■ ■- ■- - -  ,,     h 
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atatiBtieally independent 

(4.1) P[TOP EVENT]  -      U n     q. 
l<8<k leK 
  8 

If there are no  replications among min path sets and basic events are 

etatistiaally independent  then 

(4.2) P[TOP EVENT]  -      IT U     «IJ 
l<r<p ieP 

Mln Cut and Min Path Bounds. 

(4.1)  and (4.2) are not valid in general.    However,  if basic events are 

Btatistioatly independent 

(4.3) n      u 
l<r<p ieP 

q.   < P[TOP EVENT] £11 n      'I 
l<8<k leK 

is always true.    The upper bound is In general quite close when the    q.'s    are 

small, which Is the usual situation.     (4.3)  is proved in Esary and Proschan 

(1963). 

The Inclusion-Exclusion Principle. 

This is another method based on min cuts and can be used to obtain close 

bounds for large fault trees.    Let    E      be the event that all basic events in 

min cut set    K     occur.    We also assume all basic events are etatietioally 

independent.    Then 

P(E8) n     q 
icK i • 

The top event corresponds to the event  U E  if the fault tree has k min 
8-1    8 

cut sets.     Hence 

.   ..■■■■■ gMMUMi ■■-• ■ ■■ 
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Let 

I PFE   n E   n ... HE 1 

By the inclusion-exclusion principle 

and 

P[TOP EVENT]  -    I    (-l)r~1S 
r-1 ' 

- 

P[TOP EVENT] 1 S,  -    J       n     q. 
8-1 ieK 

s 

P[TOP EVENT] > Sj^ - S2 

P[TOP EVENT] £ Sj^ - S2 + S. 

The successive upper and lower bout.ds, however, do not necessarily converge In 

a monotone fashion. 

Dependent Events. 

If occurrences of basic events are not  statistically Independent, then the 

previous methods, based on assumed Independence of basic events, are no longer 

valid.  If we know that basic events are positively dependent (the technical 

term we shall use is associated)  then we can obtain useful bounds on the proba- 

bility of the Top Event. First, however, we need to introduce another Boolean 

representation for fault trees. 

- —' —- -n ■ggmmmt^Mi-^^mämiimämm  ' •   ■'-  — -^  — '—-^    ■~'"   ■   " '     ■ 
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The Mln-Max Representation. 

Let K^Kj, ..., K. be the k min cut sets for a fault tree. Then we 

can easily verify that 

(4.A) i(i(Y) - max  min Y. 
l<8<k leK 
     s 

For, If all basic events In mln cut set, say K , occur, then  mln Y. - 1 
lEKJ 

and i))(Y) - 1 , I.e. the Top Event occurs.  Likewise, If  mln Y. - 0 for all 
leK 

1 £ s £ k , then iKY) "0 and the Top Event does not occur. 

Sometimes it Is easier to develop the fault tree structure function using 

the dual representation based on mln paths.  Let PitP* F  be t^e min 

path sets for as specified fault tree.  Then 

i|/(Y) - mln  max Y . 
l_<r<p leP 

If max Y. - 1 for I £ r < p , then a basic event occurs In each mln path, 
leP 

r 

I.e., the Top Event occurs so that ^(Y) - 1 .  If max Y. - 0 for some r , 
leP 

r 

then there Is a mln path set whose basic events do not occur so that the Top 

Event does not occur, I.e. i|((Y) " 0 . 

Bounds on the Probability of the Top Event. 

We now assume that events are associated; 

Definition; 

[Esary, Proschan and Walkup (1967)].  Random variables T^T-, ..., T  are 
i z      n 

associated If 

Cov [r(T),A(T)] > 0 

•••'■'•' ■"■"-   - -' .■—-■■—-—«-   ■     .   .      .   --  -iMIMKliniMliliil llilL wfrai'    i in     '.-^wi ■,   11, ii ■■—L.■. ■ *rMt**ä-,-~.^u^ 
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for all binary, increasing functions V    and A . 

In a great many reliability situations, the random variables of interest 

are not  independent, but rather are "associated". As examples, consider 

(a) Indicator functions of min cut sets which have basic events in common; 

(b) components subjected to a common environment; 

(c) structures in which components share the load, so that failure of one 

component results In increased load on each of the remaining components. 

In case (a), if the basic events are independent, the min cut indicator 

functions are associated and not independent.  Examples (b) and (c) are physical 

situations which could lead to associated indicator random variables. 

Theorem 4.1; 

If Indicator random variables Y, ,Y. Y  are associated, then 
1    2 n 

(4.5) max      II     q. £ P[Top Event] £   min       u    q. 
i - i^r^p iEp l<8<k ieK 

Note that, in contrast to (4.3), the lower bound depends on min cut sets. 

Proof: 

The following always holds 

min  Y   £ ii/(Y)  <   max   Y 
IeK ie? s r 

for all r  (1 £ r ^ p) and s (1 £ s <_ k) .  It follows that 

max P[ min Yi - 1] < P[iKY) - X] £ min P[ max Yj - 1] 
l<s<k  ieK 
      t> 

Is always true. 

Since Y.-.Y,,, ..., Y  are associated 
i z      n 

l<r<p      ieP 

 —^iiwfctm 
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(4.6) E n Y i n q 
leK leK 

and 

(4.7) E  U  Y. <.  U  q. 
leP     IEP 

[Esary, Marshall and Proschan (1967)].  (4.5) follows from the observation that 

min Y. -  n  Y. 
leK     leK 

s       s 

and 

max Y -  u  Y . | | 
IeP     IeP 

r       r 

If basic events are statistically Independent and the q^s are small, 

the upper bound in (4.3) will very likely be the better bound. However, for 

large values of the q.'s , (4.5) may provide the better bound. To illustrate 

this, consider a fault tree with min cut sets 

Kj - {1,2} , K2 - {1,3} , K3 - {1,4} , K4 - {2,3} , Kg - {2,4} , Kg - {3,4} . 

For simplicity suppose q. ■ q, - q - q. - q . The upper bound in (4.3) is 

2 6 3 
1 - [1 - q ]  while the upper bound in (4.5) is 1 - (1 - q)  . The min-mai 

upper bound is smaller than the min cut upper bound when q ^ .62 . 

Example; The Pressure Tank. 

—8 
Assume q:. - 10   and qj ■ q3 q-, - 10" . Then 

P[i|;(Y) - 1] £ min   u q. - 7 x 10 
~ l<r<2 iePr 

On the other hand 

■ —- """'• ' -       - -- ■ iiiimn  
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P[i|((Y) - 1] >   max        n     q. ~ 10 
1<8<29 leK 
  8 

Hence, assuming only that basic events are associated, we have 

10"5 <  P[Top Event] < 7 x 10~5 

Modules. 

A module of a fault tree is a set of basic events M , together with an 

indicator function Xu > such that 

1) - rfy^Vf1'] iKI) 

where   r    is nondecreaslng and   1r    means the coordinates of   Y   are restricted 

to   M .    Modules were described for coherent structures by Birnbaum and Esary 

(1965).    Decomposing a tree In terms of modules can be useful In reducing the 

computation required for probabilistic evaluation of fault trees.    Suppose we 

can find a modular decomposition    {(Mj.x,),   ...,   (M ,x  )}    such that 

XjCY),   ..., Xr(Y)    are statistically Independent,  although    Yj^    for    1 e M8 

(1 < s < r)    may be associated.    Then 

(4.8) 

rN'OO - 1] - gptflXj® - 1] P[xr(I) - HI 

-8r|y^ uxr
(a)J 

where u (q) is the min-max upper bound, (4.5), for module M  and g- is 
X8 8 1 

the expected value of    r[Xj X  1  •    (4.8) follows from the monotonlcity 

of   g    .    In applications,  it may be useful to decompose the tree into statis- 

tically Independent modules and apply (4.8) rather than to apply (4.5) directly 

since (4.5) will be more conservative. 

.iMiaiiiim- M ,  ... ^  .. .-^.^ ......... 
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Time to Occurrence of the Top Event. 

First, we suppose that once a basic event occurs, It cannot be rectified. 

Suppose basic event 1 occurs at time T. and the Top Event occurs at time T 

Let 

1 if    Ti ±t 
Y^t) - I 

0 otherwise. 

Then P[Top Event occurs by time t] 

ED-[Y(t)] 

where   Y(t)  ■  (¥,(1),   ..., Y (t))   ,  since    ij;    Is nondecreaslng.    If -in 

P[T. £ t] » F. (t)    then we can compute    E^[Y(t)]    by using the previous algorithms 

with    q.    replaced by    F (t)  .    In particular,   (4.5) becomes 

max       H     F  (t) < Ei()[Y(t)] £   min       u     ^(t) 
I<8<k leK 
      8 

l£r<p leP 

Mean Time to Occurrence of the Top Event. 

To calculate the mean time to occurrence of the Top Event we need the dis- 

tribution of time to occurrence of the Top Event.  Since this Is often difficult 

or Impossible to compute, we obtain a useful lower bound on the mean. 

First, we observe that 

(4.9) T « mln  max T. 
l<s<k leK 

and also 

(4.10) max  mln T. 
l<r<p le? 

To see (4.9) note that the Top Event occurs as soon as the first mln cut 

event occurs. A specified mir. cut can only cause the Top Event after the last 
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event time in the mln cut set. 

To see (4.10) note that the Top Event occurs after  the last mln path falls. 

A mln path set falls as soon as any event in the set occurs. 

To obtain the mean time to occurrence of the Top Event, ET , one might 

think of substituting mean occurrence times In (4.9) or (4.10). This will not 

give the expected time to occurrence of the Top Event. 

Theorem 4.2: 

If times to occurrence of basic events are associated and 

is nondecreasing in t ^ 0 for i - 1,2, ..., n , then 

-log F1(t) 

(4.11) 

where   u. 

max J     p. 1 ET £   rain    I     U      G 
l<r<p [iePr       J l<s<k ^ ieK8 

(t)dt 

-t/u. 
tdF  (t)    and    G  (t) - e for    1 - 1,2 n .     (If    FJ 

has nondecreasing occurrence rate,    dF.(t)/F.(t)   ,  then 

decreasing for    t ^ 0 .) 

-log F1(t) 
is non- 

Proof: 

Using (4.9) and (4.10) we see that 

E mln T. £ ET f E max T. 
IcP..       "  ieK 

r s 

holds for 1 £ r < p and 1 < s < k .  Hence 

(4.12) max E mln T £ ET £ min E max T. 
l<r<p  leP  1      l<s<k  IeK  1 

 r r       s 

To show the upper bound, observe that 

P[max T > t] - P[ 11  [1 - Y (t)] - 1] 
IeK  x        IeK 

s s 

<  U  P[Y.(t) - 0] 
ieK   x 

s 

^^„„(jU^Uj,,,, 
 --■ iü         - - -  iiiiiiit niiiiirir - 
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by association [Eaary, Proschan and Walkup (1967)]. Also 

E max T - 
leK8 

P[ max T. > t]dt 
leK 

8 

<l  U  P[Y (t) - 0]dt < I  U  G (t)dt 

i  ieKs * leK8 

since VAt)  - P[Y1(t) - 1] , i - 1,2, ..., n have the property that  - 
log F1(t) 

Is nondecreaslng. I.e.  F is IFRA for increasing failure rates on the average. 

[Marshall and Proschan (1970)]. The upper bound follows by substituting In (4.12), 

To show the lower bound, observe that 

P[min T > t] - P[ n  (I - Y (t)) - 1] 
ieP ieP 

r r 

> n p[Y.(t) - o] 
ieP 

r 

by association [Esary, Proschan and Walkup]. Also 

E min T. - I P[inin T > t]dt 
iei-     1  ieP 
TUT 

J > |    n   P[Y (t) - o]dt > I    n   G (t)dt 
h ieP i ieP      1 
Or Or 

U/-]"' 
again using the IFRA property of    F      (i - 1,2,   ..., n).     The lower bound follows 

by substituting in  (4,12).j| 

Example.    The Pressure Tank. 

_ 8 5 Suppose    ET,  - 10      cycles and    ET. - 10      cycles for    i > 1 .    Then, using 

 'ii mi HI .liiilniniiai'BMi^ifciMWiii  - ■— ■~"Tiinrt- IMI|    ltu mtiTrtirtifaiifi i mi ■ ■ 
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EX >. max [14,283, 8,332] - 14,283    cycles. 
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5.     MEASURES OF EVENT IMPORTANCE 

The next step after obtaining the fault tree minimal cuts is to determine 

the relative Importance of basic events to the occurrence of the Top Event. 

From the list of min cuts  for the pressure tank example,  it is intuitively 

clear that basic events    1,2,3,4 and 5 are the most important since 

each is a one component min cut.    However, the relative importance of the 

remaining basic events is less clear. 

Suppose the Top Event occurs and we perform an autopsy to determine the 

cause.    In practice we may find that several min cuts have occurred.    However, 

if we think of events occurring sequentially in time and suppose two or more 

events cannot occur precisely at the same instant, then there must have been 

one event which "caused" the Top Event. 

In order to compute the probability that basic event 1 causes the Top 

Event, let F (t) be the probability that basic event 1 (i - 1,2, ..., n) 

occurs before time    t  .     We also assume    F.    continuous.    Let    p," 1 - q..    and 

h(2) - 1 - Ei(i(Y) 

be the probability that the Top Event does not occur where    p ■ (p, ,p„,   .... p ) 
1 i      n 

If all basic events have the s. me occurrence distribution (or have approximately 

equal occurrence rates) then it is shown in Barlow and Proschan (1973) that 

j [h(l1,p) - h^.j (5.1) I [h(l1,p) - h(01,p)]dp 

is the probability that basic event 1 causes the Top Event, where 

hCl1,p) - h(p, ..., p.l^p, ..., p) 

and 

MO^.P) " h(p, ...,  p,0  ,p,   ...,   p)   . 

■' .-^■,.~i...M., ,-  .      -         iM^jy^liil  -^U^^^M^L^,,^,!,-,......^ „.,. ,„. 
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Example; The Presaure Tank (equal occurrence rates) 

From (4.0) we see that 

8 16 
h(£) - n p +  n  p - n p 

1-1 1  1^6,7,8 1  1-1 x 

For 1 " 1 , 

and 

,„  N   7 _, 12   15 
hdj.p) - p + p  - p 

h^.p) - 0 . 

Hence 

I [h(l1,p) - h(01,p)]dp - .13942 
Assuming all events have equal occurrence rates, the likelihood that the 

pressure tank causes the Top Event Is approximately .14 . 

More generally, let E. be the event that basic event i causes the Top 

Event. Then 

P[E1] - ... - P[E5] - .13942 

P[E6] - P[E7] - P[E8] - .0625 

P[E9] -... - P[E16] - .01442 

Note that the probabilities sum to one as they should, since when the Top Event 

occurs, it must have been caused by one of events 1 through 16. 

Events 1 through 5 will cause 70% of the failures In this case. Note that 

it was unnecessary to know the common occurrence rate. 

HUM ■ **0u*tfa*mmm 
■■•-'■•-'       -  ■ - —■ - - ■ - — ■ — ■ -: nil ■■ 
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Proportional Occvtrrence Rates. 

We say that event occurrence distributions, F. , have proportional occur- 

rence rates If 

-   Xl 
Fi(t) - [F(t)] 

1 

where X > 0 , 1 « 1,2, ..., n .  It Is only necessary to specify the X^s 

to compute the probability that basic event 1 causes the Top Event.  The 

computing formula Is 

(5.2) 

where 

and 

j[h(v^)-h(0i'pi)]xipXl'ldp 

I,        A   (  Xl        Xl-1 , >!       n'^ Uj^.p-I - yp ..... P  .i.p , -••, v  ) 

L A  i^      Xi-io x^      M 

(5.2) Is proved In Barlow and Proschan (1973). 

Example.  The Pressure Tank,  (unequal occurrence rates) 

-8 
Assuming basic event 1 has occurrence rate 10  per cycle while all other 

events have occurrence rate 10  per cycle, we wish to calculate the probability 

-3 
of basic event 1 causing the Top Event.  In this case X- - 10 X.  for 1 > 1 

For convenience, let X. « .001 and ^J " 1 for 1 > 1 .  (Actually occurrence 

rates could be time dependent so long as the proportions are as assumed.) Using 

(5.2) we calculate 

PEEj^] - .0001595 

P[E,] . P[E-] - P[E,] - P[E,1 - .1595 

■ ■ ■■ -^ ■•■-■-■  ...-~i-. -,.,..,„ 

■■-^-- -■■■■■--- -, 



PlE6] - P[E71 - P[E8] - .07617 

P[E9] - ... - P[E161 " .016664 

The importance of events 2 through 8 have Increased by about IX over the 

previous example while event 1 is now negligible. 

The importance of min cut sets is discussed in Barlow and Proschan (1973). 

Marginal Importance of Basic Events. 
ah(£) 

Birnbaum (1969) proposed —:■  as a measure of the importance of basic 
3pi 

event 1 . This measure of event importance is useful for determining design 

Improvements based on cost considerations. Letting Pi " Po " ••• " Pn " ^
2 » 

be called this, the structural (marginal) importance of basic event i . This 

can also be described in terms of critical path sets. 

C. is a avitioal path set for basic event    i   if it is a path set containing 

i such that each of Its mln path sets contains 1 . Let n(i) be the number of 

aritioal path sets for   i . Then we define the Birnbaum importance of baeia 

event    1 by 

B(i) - I'^'^nii.)  , 

where n denotes the number of basic events in the event tree. 

To compute n(l) , assume the Y.'s are statistically independent, 

EYj^ - E(l - Y ) - 1/2 for i - 1,2, .... n , and use the formula 

n(i) - 2n~1E[^(l1,Y) - iKOj.Y)] 

[Cf. Barlow and Proschan (1973).] 

'i 

Example.     The Pressure Tank. 

Use    i|< (Y) -   i -   n   (i - Y.)   i -       n      (1 - Y.) 
L        i-l ^L       ^6.7,8 M 

to compute 

- ■MMMMM 
-ii   ami 
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and 

EEtKVj.Y)   I  EY1 - 1/2,1 " 1,2 n] 

E[ij.(0  ,Y)   |   EY1 - 1/2,1 - 1,2 n]   . 

For basic event    1 , 

n(l)  - 215 11 - E 1 -    n     (1 - Y ) 
i-1 

.       Ijll 

1 - n (1 - Y ) 
1^1.6,7,8 

- 215[(l/2)7 + (1/2)12 - (1/2)15] - 263 

It is not hard to see that 

n(l) - n(2) - n(3) - n(4) - n(5) - 263 . 

For basic event 6, n(6) ■ 255. 

Also n(6) - u(7) - n(8) - 255. 

For basic event 9, n(9) " 7  .     It is not hard to see that 

n(9)  - n(10) - n(ll) - n(12) - n(13) - n(14) - n(15) - n(16) - 7   . 

The Birnbaum importance ordering of events is therefore 

1~2~3~4~5>6~7~8>9~10~11~12~13~14~15~16, 

where "1 ~ 2" means 1 and 2 are equally important In the event tree, and 

"5 > 6" means 5 Is more Important than 6 in the event tree. Figure 10 pro- 

vides a key to the original example of Figure 6. For example, we see that 

the pressure tank itself and the K2 relay are structurally most Important. 

The pressure switch is next most important, while the timer, the Kl relay, 

and the SI switch are the least Important structurally. 

__M>aMi  —     ■■  i ' - m 
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39 n 
Basic Event 

1 
Prob. 

1 causes 
rupture 

1 (.000159) 

2 (.159500) 

3 (.159500) 

4 (.159500) 

5 (.159500) 

6 (.0761745) 

7 (.0761745) 

8 (.0761745) 

9 (.016664) 

10 (.016664) 

11 (.016664) 

12 (.016664) 

13 (.016664) 

14 (.016664) 

15 (.016664) 

16 (.016664) 

Number of Critical Paths, n(l) 
Containing Basic Event 1 

Description of 
Basic Events 

263 

263 

263 

263 

263 

255 

255 

255 

7 

7 

7 

7 

7 

7 

Pressure tank failure 

Secondary failure of 
pressure tank due to 
Improper selection 

Secondary failure of 
pressure tank to out- 
of-tolerance conditions 

K2 Relay contacts fall 
to open 

K2 Relay secondary failure 

Pressure switch secondary 
failure 

Pressure switch contacts 
fall to open 

Excess pressure not 
sensed by premure 
actuated switch 

SI switch secondary failure 

SI switch contacts fall 
to open 

External reset actuation 
force remains on switch SI 

Kl relay contacts fall to 
open 

Kl relay secondary failure 

Timer does not "time off" 
due to Improper setting 

Timer relay contacts fall 
to open 

Timer relay secondary 
failure 

FIGURE 10: KEY TO PRESSURE TANK EXAMPLE 

"-""llMiiniiWiiilii mnn  ~.-—■■  
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6.  COMPUTER PROCESSING OF FAULT TREES 

In this section we give a brief description of a Fortrau program called 

TREEL which has been developed for processing fault trees. 

The handling of complex systems necessitates various error checks on the 

Input data.  Fault trees are represented to the computer by describing each 

gate of the tree with one card.  It contains an alpha-numeric name of the gate, 

type of the gate, number of gate Inputs and basic event Input and their alpha- 

numeric names. The program 'TREEL' not only makes error checks from punching 

mistakes to circular logic, but also relndexes the gates and components.  The 

Importance of this indexing is tremendous In analyzing the fault tree In an 

efficient manner. 

For a system with 2000 gates and 2000 basic events we would Index the 

basic events from 1 to 2000 and gates by Integers from 2001 to A000.  Gates 

are Indexed In the order they appear In the tree from the bottom. I.e. the 

lowest level gates are those which have only basic events as Inputs.  This 

Indexing scheme assures us that If a gate gets Index I then It has Inputs 

whose Indices will be less than I. 

Apart from Indexing the gate, It also produces the Fortran equivalent of 

the tree logic. Thus we can evaluate the system state given the component 

states. 

We also obtain bounds on the number of mln cut sets and max size of the 

mln cut sets of this tree as well as the dual tree. This Information Is a 

valuable aid In determining which tree to work on. 

We also obtain the degree of replication of the gates and basic events In 

the tree.  The number of times a gate Is replicated In the tree Is a helpful 

aid In reducing storage requirements of mln cut set algorithms [Chatterjee (1973)]. 

Subroutine XREF prints out the cross-reference table of the tree Index and 

the alphanumeric Identification names of the gates and basic events. 

- - ■- ■  ■      -   liiimnhii     ii   i ftimmuMmmummmm  MMM ■■ 
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The program is written In FORTRAN for the CDC 6400. This program has 

lower storage requirements, shorter execution time and more flexibility 

(i.e. Is not just restricted to 'AND' and 'OR' gates) than the comparable 

program of Veseley and Narum [1970]. The generalized version of the program 

takes care of any gate for which the logic function is well defined and can 

be written as a FUNCTION routine. 

Miiii!iimi«-in.i..iirii.i.lliiM i ■ J^bj^l 
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